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1 Objectives, originality and innovation
Background. Studying protein diversity and identifying physiologically relevant protein isoforms are crucial
steps in biomedical research. Biological mechanisms, such as alternative splicing or alternative promoter
usage, allow single genes to code for multiple isoforms; for example, in humans, it was estimated that
approximately 20,000 genes may give rise to over 300,000 isoforms. Nonetheless, most experimental
approaches detect proteins at the gene level, and do not allow investigating proteome complexity at
the isoform level.

Current state of research in the field. At present, the main strategy to infer proteins is via “bottom-
up” proteomics, where proteins are indirectly measured via peptides, which act as surrogate markers for
their protein(s) of origin. However, most peptides, called shared peptides, map to multiple protein isoforms;
this usually results in ambiguous protein identifications (Figure 1), and inferential results are typically
abstracted to the gene level. Although a few methods have been proposed to perform inference at
the isoform level (notably, EPIFANY, FIDO, and PIA), due to the prevalence of shared peptides, protein
detection is affected by low statistical power. Furthermore, inference only focuses on identifying proteins
(presence vs. absence), and not on further measures such as protein abundance. Similarly, differential tools
(e.g., DEP, MAP and DEqMS) comparing protein expression between experimental conditions (e.g., healthy
vs. diseased) also provide results at the gene level.

Objectives. We propose a novel statistical method for proteogenomics inference, via integration of
transcriptomics data, which is a prerequisite and correlate of protein abundance. We will jointly model
proteomics and transcriptomics data in a Bayesian probabilistic framework, in order to perform
inference on individual protein isoforms. Note that, our method may also be used with proteomics
data alone, but accuracy is expected to increase when transcriptomics data is also provided. The overarching
goal of this proposal is to develop a well-documented, and widely-used open source software tool, based
on rigorous statistical methods and efficient computational strategies, distributed as a Bioconductor R
package, which makes it easy to install and integrate with existing pipelines, and accompanied by an
example vignettes that facilitates its usage.

Multiomics integration. First, transcriptomics data (e.g., RNA-sequencing) will be employed to estimate
the relative abundance of transcript isoforms: these estimates will be used to formulate an informative
prior for the relative abundance of the respective protein isoforms.

Two-layer latent variable model. Inference on protein isoforms is complicated by several technical
limitations; in particular: i) peptides may be erroneously detected, even when absent; ii) shared peptides
are compatible with multiple protein isoforms. We explicitly model these two sources of uncertainty, with a
two-level latent variable model. First, we sample the presence/absence of each peptide based on its estimated
probability of being mistakenly detected (provided directly by proteomics tools). Second, for shared peptides
that were estimated as being present, we allocate their abundance across the protein isoforms they map to,
hence recovering the presence and abundance of each protein isoform.

Future directions. Initially, our method will infer parameters from single samples. In a second stage, we
will extend our model to jointly fit multiple samples (i.e., biological replicates) in a Bayesian hierarchical
framework, hence allowing for sample-specific parameters, while sharing information across samples. This
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Figure 1: Example of two shared peptides (highlighted by the black arrows) across three protein isoforms.

extended model will also enable differential testing between conditions (e.g., treated vs. untreated),
hence identifying the individual protein isoforms that vary across conditions. Furthermore, although current
work involves analysis of bulk data (i.e., mean signal across multiple cells), our future methods will progress
into single-cell variants. This would allow us to perform cell-type specific inference, hence investigating
how protein isoforms change between cell types. Overall, we believe that the research direction presented
here will lead to several research products.

Novelty. Our approach will not only infer the presence/absence of protein isoforms, but also
estimate their abundance. Additionally, we will provide a measure of the uncertainty of our
estimates, via the posterior probability the a protein isoform is present in the sample, and a posterior
credible interval of its abundance. Importantly, to be best of our knowledge, at present, no tool infers
protein abundance, jointly models multiple samples, and performs differential testing at the isoform level;
furthermore, no method in proteomics has ever used a two-layer latent variable approach.

2 Impact, feasibility and implementation
Protein abundance. Given P protein isoforms, we assume that the overall protein abundance of a sample,
denoted by n ∈ N, is distributed across the P isoforms according to a multinomial distribution:

X = (X1, . . . , XP ) ∼MN

π = (π1, . . . , πP ), n =
P∑

p=1

xp

 , (1)

where Xp represents the random variable indicating the overall abundance originating from the p-th protein
(and xp is its realization), and πp is the probability that a unit of abundance comes from the p-th protein,
with

∑P
p=1 πp = 1. The probability that the p-th protein is present is estimated via Pr (Xp > 0). Nonethe-

less, although we aim to infer proteins, measurements refer to peptides; therefore, protein isoform
abundances, in X, are treated as latent variables and sampled via a data augmentation approach.

Latent variables - 1st layer. Assume that N peptides are detected in total, and that PEi is the estimated
probability (taken as input) that the i-th peptide, albeit absent, is erroneously detected.

We sample if a peptide has been wrongly detected following a Bernoulli distributions:

ϵi|PEi ∼ Bern(PEi), for i = 1, . . . , N, (2)

where ϵi = 1 if the i− th peptide has been mistakenly detected, and 0 otherwise.

Latent variables - 2nd layer. We define Yi as the abundance of the i-th peptide, and ψi as the list of
proteins the i-th peptide maps to; we further denote by Xpi the (unknown) abundance of peptide i that
comes from protein p. We assume that the abundance of the i-th peptide can be redistributed to the proteins
in ψi according to a multinomial distribution:

(X1i, . . . , XPi)|π, ψi, Yi, ϵi ∼MN
(
π̃(i), Yi(1− ϵi)

)
, for i = 1, . . . , N, (3)
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where π̃(i) =
(
π̃
(i)
1 , . . . , π̃

(i)
P

)
, with

π̃(i)p =
πp1(p ∈ ψi)∑P

p′=1 πp′1(p
′ ∈ ψi)

, (4)

where 1(A) is 1 is A is true, and 0 if A is false. In other words, π̃(i)p is proportional to πp if the i-th peptide
maps to the p-th protein, and 0 otherwise. Note that, in (3), the peptide abundance, Yi(1− ϵi), is 0 if the
peptide has been sampled as mistakenly detected in (2) (i.e., when ϵi = 1). The protein isoform abundances
are then recovered by adding the abundances obtained from the N peptides allocations: xp = xp1+ . . . xpN ,
for p = 1, . . . , P .

Prior formulations. We use an informative Dirichlet prior for π:

π ∼ Dir (δ = (δ1, . . . , δP )) , (5)

with δ proportional to the transcript isoforms abundance. This is a conjugate prior, which results in a
convenient posterior distribution:

π|x, δ ∼ Dir((x1 + δ1, . . . , xP + δP )). (6)

We further assume a weakly-informative discrete uniform prior for the overall abundance of proteins:

Xp ∼ Unif(0, 1, . . . , n), for p = 1, . . . , P. (7)

MCMC. Parameters and latent states are alternately sampled from their conditional distributions, fol-
lowing two Gibbs samplers, via a Metropolis-within-Gibbs Markov chain Monte Carlo (MCMC) scheme.
Convergence is assessed via Heidelberger and Welchs stationarity test.

Benchmarking. We will design various benchmarks, on both real and simulated data, and evaluate the
performance of our approach and several competitors. For our model evaluation, we will be supported by
our collaborators at Dr. Sheynkman’s lab (University of Virginia), who have already collected data, and
will generate more as the project evolves.

Figure 2: ROC curve for the detection of protein isoforms.
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Preliminary results. We have implemented a prototype of our model and tested it on real data. In
particular, our collaborators collected proteomics measurements from six distinct proteases: with a leave-
one-out approach, we analyzed one at a time, and used the (unique peptides from the) remaining five to
validate results. When using proteomics data alone, our approach (“Our_model”; AUC of 0.83) displays
higher sensitivity and specificity than competitors (AUCs between 0.67 and 0.75) at detecting protein
isoforms; this gap further increases when adding transcriptomics data (“Our_model_mRNA”; AUC of 0.86;
Figure 2). In addition, our estimated abundances highly correlate (Pearson correlation of 0.72) with
the corresponding ground truth (Figure 3). Finally, albeit full MCMC schemes can be computationally
cumbersome, our algorithm was efficiently coded in C++, and ran in ∼2 minutes.

Impact. This proposal aims at creating an all-rounded statistical method for protein isoform
inference. Our tool could be of great utility to computational biologists, by unlocking a great unexploited
potential for biological discoveries. For instance, it was shown that proteins of the transcription factor MITF
display changes in abundance (at the gene level) between melanoma subtypes; our approach could allow
estimating the presence and abundance of the respective individual protein isoforms, and investigating how
they vary across cancer subtypes, hence enabling a deeper understanding of cancer driving mechanisms.

PI’s previous experience. The PI, as a statistician with solid programming skills and more than a decade
of experience in mathematical modelling of biological data, represents a rare interdisciplinary profile,
ideal for the development of statistical methods for biological data. Furthermore, he has already
developed four Bioconductor R packages, and is familiar with various technical and conceptual aspects of
this proposal: latent variables approaches, differential methods, Bayesian hierarchical modelling, and C++
coding.

Figure 3: log-10 protein isoform abundances; estimates from our model (y axis) vs. ground truth (x axis).
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